Lightning Talk Market Research

Nisha Raj, Alex Chambers, Colin Kempf, Aidan Gull, Adam Fields, Alex Christie

Project Overview

- ARA is an advanced wireless research platform covering lowa State University, Ames, and nearby rural areas. It collects weather and wireless signal data.
- Tasked with creating a system that will recognize and predict when a weather event is occurring.
- This trigger, signals data collection before a given weather event has begun and allows us to continue collecting data until the weather event has passed.
- This weather data will eventually allow researchers to determine how the performance from the ARA framework differs during different weather events.

Problem Statement

- Want to intelligently collect data on a wide range of network data during a variety of weather events.
- Use forecast data to predict future weather events to gather data only when weather events we want to record are going to occur.
- Store collected data and allow for user queries to access and format selected data.

Pros

- Free
- Localized Weather Data
- Real Time
- Many related data points

Cons

- Outputs lots of information, some of which we might not need
- Only 25 requests per hour
- Needs an API Key

Example Output

Tomorrow Weather

```
"time": "2024-10-03T16:00:00Z",
"values": {
    "cloudBase": 0.81, "cloudCeiling": null, "cloudCover": 17,
    "dewPoint": 11, "evapotranspiration": 0.079, "freezingRainIntensity": 0,
    "humidity": 66, "iceAccumulation": 0, "iceAccumulationLwe": 0,
    "precipitationProbability": 0, "pressureSurfaceLevel": 988.35,
    "rainAccumulation": 0, "rainAccumulationLwe": 0, "rainIntensity": 0,
    "sleetAccumulation": 0, "sleetAccumulationLwe": 0, "sleetIntensity": 0,
    "snowAccumulation": 0, "snowAccumulationLwe": 0, "snowDepth": 0,
    "snowIntensity": 0, "temperature": 17.38, "temperatureApparent": 17.38,
    "uvHealthConcern": 1, "uvIndex": 3, "visibility": 16, "weatherCode": 1100,
    "windDirection": 44.69, "windGust": 3.31, "windSpeed": 1.19
```


Related Products

National Weather Service

Pros

- Free and Open Source
- Data formatted in JSON
- Caches the result of requests, avoiding multiple request to same endpoint

Cons

- Initially need two API requests to get location and weather
- Low reliability APIs go down often
- Integration documentation not thorough

Example Output

National Weather Service

```
"properties": {
   "units": "us".
   "forecastGenerator": "HourlyForecastGenerator", "generatedAt": "2024-09-13T19:49:19+00:00",
   "updateTime": "2024-09-13T17:49:00+00:00", "validTimes": "2024-09-13T11:00:00+00:00/P7DT14H",
   "elevation": {
       "unitCode": "wmoUnit:m",
       "value": 274.929599999999999
   "periods": [
           "number": 1, "name": "",
           "startTime": "2024-09-13T14:00:00-05:00", "endTime": "2024-09-13T15:00:00-05:00",
           "isDaytime": true, "temperature": 82, "temperatureUnit": "F", "temperatureTrend": "",
           "probabilityOfPrecipitation": {
               "unitCode": "wmoUnit:percent",
               "value": 4
           "dewpoint": {
               "unitCode": "wmoUnit:degC",
               "value": 14.4444444444444444
           "relativeHumidity": {
               "unitCode": "wmoUnit:percent",
               "value": 44
           },
           "windSpeed": "12 mph", "windDirection": "SE", "icon": "https://api.weather.gov/icons/land/day/bkn?size=small",
           "shortForecast": "Mostly Cloudy", "detailedForecast": ""
```


Related Products

Open-Meteo

Pros

- No API key needed
- 10000 requests per day
- Geocoding API finds coordinates of locations
- API can responds with cart of data points to be plotted

Cons

- When testes weather was not accurate
- Lot of information is output
- Not very readable , needs to be diligently formatted

Example Output

Open-Meteo

Coordinates 42.0°N 93.625°E							
Elevation 852.0 m asl							
Timezone None							
Timezone difference to GMT+0 0 s							
		date	temperature_2m	relative_humidity_2m	cloud_cover	wind_speed_10m	wind_direction_10m
0	2024-10-03	00:00:00+00:00	12.542001	46.0	100.0	13.039754	186.340103
1	2024-10-03	01:00:00+00:00	13.092000	46.0	0.0	13.493999	189.210953
2	2024-10-03	02:00:00+00:00	14.992001	42.0	0.0	17.309973	196.927597
3	2024-10-03	03:00:00+00:00	17.441999	37.0	0.0	21.767351	214.215759
4	2024-10-03	04:00:00+00:00	19.491999	33.0	0.0	20.377399	237.994659
5	2024-10-03	05:00:00+00:00	20.892000	30.0	0.0	17.727943	257.092590
6	2024-10-03	06:00:00+00:00	22.591999	27.0	61.0	13.910169	259.562561
7	2024-10-03	07:00:00+00:00	23.341999	24.0	10.0	14.058450	272.935608
8	2024-10-03	08:00:00+00:00	23.591999	23.0	5.0	14.458382	288.886169
9	2024-10-03	09:00:00+00:00	23.341999	22.0	0.0	14.578890	302.905243
10	2024-10-03	10:00:00+00:00	22.691999	23.0	0.0	12.727921	315.000092
11	2024-10-03	11:00:00+00:00	21.642000	25.0	0.0	9.832680	336.250488
12	2024-10-03	12:00:00+00:00	19.691999	31.0	0.0	5.506941	11.309896

Market Gap

- Exists no software/system that predicts weather and then triggers weather data collection from the ARA infrastructure.
 - APIs are used in collaboration with ARA weather stations to determine weather events
- Solution needs to be very specific and integrated with the ARA infrastructure.

New Ideas

- Decided to use more than one weather API to predict weather events.
 - Gives wider range of weather data
 - Increases chances of catching every weather event
- Possible data formatting tools
 - Fastfield

Conclusion

- Current products give us various data metrics we can use to predict weather events for our own system but only when weather event is already happening.
- We need to predict weather events before they happen and collect data an hour before and after weather event
- Utilize the weather APIs to try to predict weather events for our own systems

